Kondisi Oseanografi dan Dinamika Konservasi
Sumberdaya Pesisir dan Lautan
Wilayah Perairan Riau

Zuhdi
Laboratorium Pendidikan Fisika, Jurusan Pendidikan MIPA FKIP
Universitas Riau Pekanbaru 28293 Riau

Abstract
Condition of regional oceanography coastal area territorial water of Riau represent vitally matter in ecosystem its characteristic. This useful data in order to development of environmental resource and research into with aim to improve exploiting of resource biotic and abiotic for the sake of prosperity specially to society of provinsi Riau, which major region in the form of territorial water and ocean. Ironic but, though resource territorial water of ocean very abundance in the reality prosperity of society very far drop behind in exploiting available resource. This research is done with survey and muster data of oceanography from some source beside identify the condition of territorial water through chemical parameter and territorial water physics. Is also done by measurement of speed of current, temperature, and salinitas. Result of research indicate that region territorial water of Riau to consist of Coastal area ecosystem and sea of Riau that is mangrove ecosystem, field ecosystem ponder, estuaria ecosystem. While from potency convert oceanic energy that wave and ebb energy very promising for the development and generalization electrics energy of Riau.

Keywords: Oceanography, ecosystem, energy
juga sumberdaya non hayati seperti minyak bumi, gas alam, bauksit, pasir laut. Perairan wilayah ini merupakan perairan yang menghubungkan Laut Cina Selatan dan Selat Karimata. Sebaran batimetri dapat digolongkan menjadi dua bagian. Pertama adalah perairan dangkal di bagian barat laut, yang berbatasan dengan Selat Melaka, pantai pada perairan ini memiliki lerang landai dengan kedalaman perairan berkisar antara 0 – 25 m. Bahagian selatan perairan ini (antara Sumatera dan Kalimantan) memiliki kedalaman antara 0 – 40 m. Dari sebaran ke utara perairan semakin dalam dan menyiap dengan laut Cina Selatan. Di sisi timur laut terdapat laut Natuna yang menyatukan dengan laut Cina Selatan. Dasar perairan semakin dalam yang dapat mencapai 120 m ke arah utara.

Di perairan Selat Melaka, umumnya arus pasang surut merupakan arus bolak balik dan merupakan garis lurus dari utara ke selatan. Arus pasang mengarah pada arah tertentu selama enam jam dan arus surut untuk periode yang hampir sama dengan arah berlawanan. Arus palmumunya dari Utara ke Tenggara dan arus surut mengarah dari Selatan ke Barat laut dengan kecepatan minimum 0,2 knot dan kecepatan maksimum 1,7 knot (Bapedal, 2002).

Arus permukaan di wilayah laut dan keputusan provinsi Riau dipengaruhi oleh angin monson, dengan kecepatan berkisar antara 11,2 – 73 cm/det, ketinggian gelombang rata-rata yang diasumsikan dari kecepatan angin rata-rata adalah 1,3 m. Salinitas perairan berkisar 16 – 33 ppm, perairan sekitar Kabupaten Karimun dan Pulau Batam mempunyai salinitas yang lebih rendah pada variasi yang temporal juga relatif rendah.

1. Kajian Teoritis Kondisi Oceanografi
Wilayah pesisir dan laut

Kajian kondisi oceanografi wilayah pesisir dan lautan, dapat dikategorikan melalui dua aspek yakni aspek Fisika dan Kimia. Kedua aspek ini memegang peranan dalam menentukan karakteristik ekosistem wilayah terutama menyangkut sumberdaya hayati yang jumlah, suburan dan berkembang di wilayah ini.

a. Kondisi Oceanografi Fisika Perairan
Pada kawasan pesisir dan laut dapat digambarkan oleh terjadinya fenomena alam seperti terjadinya pasang surut, arus, kondisi suhu, salinitas, dan angin. Fenomena-fenomena ini memberikan kekhasan karakteristik pada kawasan pesisir dan lautan, sehingga menyebabkan terjadinya kondisi fisik perairan berbeda-beda.

1) Pasang Surut dan Muka Laut
Pasang surut (pasut) adalah proses naik turunnya muka laut hampir secara periodik karena gaya gravitasi benda-benda angkasa, terutama bulan dan matari (Nomij, 1987). Naik turunnya muka laut dapat terjadi sekali sehari yang disebut juga pasut tunggal, atau dua kali sehari (pasut ganda). Sedangkan pasut yang berprilaku di antara keduaanya disebut sebagai pasut campuran.

Menurut Pariwowono dalam (Rokhmin, 2001), untuk memprediksi kondisi pasut dengan akuras yang baik diperlukan data pengukuran paling sedikit selama 15 hari, atau selama 18,6 tahun untuk mendapatkan hasil prediksi dengan akuras tinggi. Hal ini dimungkinkan karena pasut bersifat sebagai gelombang, sehingga dengan mengetahui amplitudo dan periode dari masing-masing komponen pasut tersebut, kita dapat mensintesisesa melalu penjumlahan komponen pasut mengikuti persamaan berikut.

\[Y = \sum_{n=1}^{N} A_n \cos \left(\frac{360t}{T} - \theta \right) \]

dimana \(Y \) = tinggi pasut dalam waktu \(t \)

\(T \) = periode komponen pasut ke-\(n \) dalam jam

\(A_n \) = amplitudo komponen pasut ke-\(n \)

\(\theta \) = Fase sudut komponen pasut ke-\(n \)

Komponen harmonik pasut, dapat pula dijelaskan melalui tabel 1.
Tabel 1. Komponen Pasut, Penyebab, Periode, dan Gaya yang ditimbulkan

<table>
<thead>
<tr>
<th>Tipe Pasut</th>
<th>Komponen Harmonik penyebab</th>
<th>Simbol</th>
<th>Periode (Jam)</th>
<th>Gaya yang ditimbulkan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganda</td>
<td>Bulan Utama</td>
<td>M₂</td>
<td>12.42</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Matahari Utama</td>
<td>S₂</td>
<td>12.00</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Elips Bulan Besar</td>
<td>N₂</td>
<td>12.66</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Bulan-Matahari</td>
<td>K₂</td>
<td>11.97</td>
<td>13</td>
</tr>
<tr>
<td>Tunggal</td>
<td>Bulan-Matahari</td>
<td>K₁</td>
<td>23.93</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Bulan Utama</td>
<td>O₁</td>
<td>26.87</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Matahari Utama</td>
<td>P₁</td>
<td>24.07</td>
<td>19</td>
</tr>
<tr>
<td>Periode</td>
<td>Bulan 2 Mingguan</td>
<td>M₀₉</td>
<td>327.86</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Bulan-Matahari Mingguan</td>
<td>M₀₉</td>
<td>354.36</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Bulan 4 Mingguan</td>
<td>M₉₈</td>
<td>661.30</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Matahari Semesteran</td>
<td>S₉₈</td>
<td>4384.90</td>
<td>8</td>
</tr>
</tbody>
</table>

(Dahari, 2001)

Gelombang yang merambat dari lautan dengan kedalaman h₁ menuju perairan pantai dengan kedalaman h₂, maka kecepatan rambatnya akan berkurang menurut:

\[\frac{C₂}{C₁} = \left(\frac{h₂}{h₁} \right)^{1/3} \]

dimana

- \(C₁ \) = Kecepatan gelombang di laut dalam.
- \(C₂ \) = Kecepatan gelombang di laut dangkal.

Kemudian menurut Bowden (1983), kecepatan arus pasut dapat pula diformulasikan sebagai:

\[\frac{U₂}{U₁} = \left(\frac{h₁}{h₂} \right)^{1/4} \]

\(U₁ \) = kecepatan arus pasut di laut dalam.
\(U₂ \) = kecepatan arus pasut di laut dangkal

Suatu wilayah perairan semi terlutup seperti teluk, akan heraki terhadap gelombang yang ditimbulkan oleh energi pasut. Reaksi tersebut tergantung pada modus osilasi alami badan air, dan kecenderungan untuk bersosialisasi terhadap komponen pasut yang memasuki perairan tersebut. Dengan demikian suatu teluk akan berfungsi sebagai resonator jika:

\[L = 0.25\ T \left(\frac{g \cdot h}{T} \right)^{1/2} \]

\(L \) = panjang teluk.
\(T \) = periode gelombang pasut.
\(g \) = gravitasi bumi.
\(h \) = kedalaman rata-rata teluk.

Secara kuantitatif, tipe pasang surut suatu perairan dapat ditentukan dengan niusah antara amplitudo (tinggi gelombang) unsur-unsur pasut tunggal utama dengan unsur-unsur pasut ganda utama. Niusah ini dikenal dengan bilangan Formzahl dengan formulasi sebagai berikut:

\[F = \frac{(O₁ + K₁)}{(M₂ + S₂)} \]

dimana

\(F \) = bilangan Formzahl
\(O₁ \) = amplitudo komponen pasut tunggal utama yang disebabkan oleh gaya tarik bulan
\(K₁ \) = amplitudo komponen pasut tunggal utama yang disebabkan gaya tarik bulan dan matahari.
\(M₂ \) = amplitudo komponen pasut ganda utama yang disebabkan oleh gaya tarik bulan
\(S₂ \) = amplitudo komponen pasut ganda utama yang disebabkan oleh gaya tarik matahari

Selanjutnya nilai F dapat ditafsirkan dengan katagori:

- 0,25 : Pasut bertipe ganda.
- 0,26 - 1,50 : Pasut tipe campuran dengan tipe ganda lebih dominan.
- 1,50 - 3,00 : Pasut tipe campuran dengan tipe tunggal lebih dominan.
- > 3,00 : Pasut tipe tunggal.

2) Gelombang Laut

Gelombang pada permukaan laut umumnya terbentuk karena adanya proses alih energi dari angin ke permukaan laut, atau akibat terjadinya gempa di dasar laut. Gelombang merambat ke segala arah membawa energi tersebut yang kemudian diplekskan ke pantai dalam bentuk hamparan ombak. Rambatan gelombang ini menempuh jarak ribuan kilometer sebelum mencapai suatu pantai. Gelombang mendekati pantai akan mengalami pembiasan (refraction), dan akan nembus (convergence) jika mendekati semanjang, atau menyebab (divergence) jika menemuicekungan. Disemping itu jika gelombang menuju ke perairan dangkal akan
mengalami spilling, plunging, collapsing, atau surging.

Semua fenomena yang dialami gelombang tersebut pada hakikatnya disebabkan oleh keadaan topografi dasar lautnya (sea bottom topography).

Kecepatan gelombang dapat dinyatakan melalui persamaan:

\[
C^2 = \left(\frac{g \cdot L}{2 \pi} \right) \tanh \left(\frac{2zh}{L} \right)
\]

\[C = \text{kecepatan gelombang}, \]
\[g = \text{gravitasi bumi}, \]
\[L = \text{panjang gelombang}, \]
\[h = \text{kedalaman perairan}, \]
\[\pi = 3.14 \]
\[\tanh = \text{tangen hiperbolik}. \]

Gelombang merupakan parameter utama dalam proses abrasi dan sedimentosi, dimana besar proses tersebut sangat bergantung pada besarnya energi hamparan gelombang ke pantai. Besarnya energi gelombang yang ditentukan oleh tinggi gelombang melalui persamaan berikut (Koma, 1981)

\[E = \frac{1}{32} \sigma g \cdot A^2 \]

dimana
\[E = \text{energi gelombang}, \]
\[\sigma = \text{densitas air}, \]
\[A = \text{amplitudo gelombang}, \]
\[g = \text{gravitasi bumi}. \]

3) Arus di Pantai

4) Suhu dan Salinitas

Suhu dan salinitas adalah parameter oceanografi yang penting dalam sirkulasi untuk mempelajari asal-usul massa air. Kedua parameter ini serta tekanan menentukan densitas air laut. Perbedaan densitas antara dua tempat akan menghasilkan perbedaan tekanan yang kemudian akan memicu aliran massa air dari tempat bertekanan tinggi ke tempat bertekanan rendah.

Suhu suatu perairan dipengaruhi oleh radiasi matahari; posisi matahari; letak geografis; musim; kondisi awan; serta proses interaksi antara air dan udara, seperti alih panas, penguapan, dan hembusan angin. Kondisi yang hampir serupa berlaku untuk salinitas perairan. Parameter yang mempengaruhi adalah keadaan lingkungannya (muara sungai atau garun pasir), musim, serta interaksi antara laut dengan daratan.

5) Angin

Angin merupakan parameter lingkungan penting sebagai gaya penggerak dari aliran skala besar yang terdapat baik di atmosfer maupun lautan. Arus kurosi di lautan Pasifik dan arus Teluk di lautan Atlantik merupakan dua contoh aliran di laut yang digerakkan oleh angin.

Angin merupakan gerakan udara dari tempat bertekanan udara tinggi ke tempat yang bertekanan rendah. Kuantum hembusan angin tersebut ditentukan oleh besarnya perbedaan tekanan yang dapat dinyatakan melalui persamaan:

\[PGF = \frac{m}{\sigma} \cdot \frac{dp}{dx} \]

dimana
\[PGF = \text{gaya kelandaian tekanan (pressure gradient force)}, \]
\[\sigma = \text{densitas udara} = 1.2 \text{ kg/m}^3 \]
\[p = \text{tekanan udara (mb)}, \]
\[x = \text{jarak antara dua tempat (m)}. \]

Di wilayah pesisir, angin lokal yang dikenal sebagai angin darat dan laut dimanfaatkan oleh para nelayan untuk melaut menangkap ikan dan kembalinya dari setelah itu. Berhembusnya angin darat (dari darat kelaut) pada malam hari dan angin laut (dari laut ke darat) pada siang hari disebabkan oleh perbedaan panas antara daratan dan lautan.

b. Kondisi Oceanografi Kimia Perairan Pesisir dan Lautan
Kualitas suatu perairan pesisir dicirikan oleh karakteristik kimianya, yang sangat dipengaruhi oleh masukan dari daratan maupun dari laut sekitarnya. Pada kenyataannya, perairan pesisir merupakan penampungan (storage system) akhir segala jenis limbah yang dihasilkan oleh aktivitas manusia. Karenanya karakteristik kimia perairan pesisir sangat unik dan ditentukan oleh besar kecilnya pengaruh interaksi kegiatan-kegiatan di atas serta kondisi hidrodinamika perairan pesisir seperti proses difusi (diffusion), disolusi (dissolution), dan pengadukan (turbulence) terhadap substansi kimia.

Oseanografi kimia dapat didefinisikan sebagai bagian dari ilmu oseanografi yang khusus mempelajari sifat-sifat kimia laut dan komposisi sedimen laut. Komposisi kimia laut, khususnya di perairan estuaria sangat dipengaruhi oleh masukan massa air dari sistem sungai yang bermuara. Pengaruh terhadap kualitas kimia perairan estuaria akan lebih nyata apabila massa air sungai yang bermuara ke estuaria mengandung buangan limbah cair industri, limbah domestik dan pertanian yang berlangsung secara kontinyu dan relatif lama. Kadar unsur kimia perairan sungai yang masuk ke estuaria memiliki perbedaan dengan kadar unsur kimia air laut, hal ini dapat dilihat melalui tabel 2.

Substansi kimia bersifat mudah terurai (BOD, NHI₃, N, N-organik, Surfactan, dll.), akan mengalami degradasi dan mineralisasi (menghasilkan unsur-unsur C, H, N, S, P, dll.), proses degradasi tersebut membuktikan oksigen terlarut dalam air. Bila suplai oksigen lebih lambat dibandingkan penggunaannya, maka akan terjadi keadaan anaerob yang menimbulkan kematian massal biota laut karena kekurangan oksigen terlarut untuk respirasi.

Substansi kimia yang tidak mudah terurai seperti biosida/organoklorin, hidrokarbon, dan logam berat disebut komponen resistan, komponen ini akan berada relatif lama dalam ekosistem perairan pesisir dan dapat terakumulasi dalam biota laut, kemudian mengalami proses biotransformasi melalui sistem jaringan makanan (food web), dan proses biomagnifikasi dimana kadarnya dalam tubuh biota tersebut akan meningkat. Dampak negatif terhadap kesehatan manusia dapat terjadi apabila biota laut tersebut dikonsumsi.

1) Siklus dan Distribusi Nutrien

Ada tiga jenis material hasil proses biologis di permukaan laut yang jatuh ke dalam laut yaitu: jaringan organik, kalsium karbonat (CaCO₃) dan Silika opal (SiO₂ nH₂O). Material tersebut dihasilkan oleh binatang dan tumbuhan laut. Semua binatang dan tumbuhan menghasilkan jaringan organik, beberapa binatang dan tumbuhan memproduksi CaCO₃ dan SiO₂.

Gas nitrogen terlarut tidak digunakan untuk proses biologi, karena hanya sebagian kecil saja yang bisa digunakan oleh bakteri. Gas nitrogen terlarut kira-kira 11 ppm, sedangkan konsentrasi keseluruhan nitrogen dalam air adalah 11,5 ppm, jadi hanya sedikit saja fraksi nitrogen dalam bentuk bukan gas.

Tabel 2. Perbedaan kadar unsur kimia air sungai dengan air laut

<table>
<thead>
<tr>
<th>Unsur</th>
<th>Air Sungai (ppm)</th>
<th>Air laut (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>4.3 - 44.4 (21.13)</td>
<td>412</td>
</tr>
<tr>
<td>SiO₂</td>
<td>8.1 - 30.4 (15.76)</td>
<td>2.0</td>
</tr>
<tr>
<td>SO₄</td>
<td>0.8 - 59.5 (14.37)</td>
<td>905</td>
</tr>
<tr>
<td>Na</td>
<td>3.7 - 23.5 (9.58)</td>
<td>10.77</td>
</tr>
<tr>
<td>Cl</td>
<td>1.7 - 13.9 (6.13)</td>
<td>18.80</td>
</tr>
<tr>
<td>Mg</td>
<td>1.5 - 12.4 (5.52)</td>
<td>1290</td>
</tr>
<tr>
<td>K</td>
<td>1.2 - 3.0 (2.09)</td>
<td>380</td>
</tr>
<tr>
<td>CO₃</td>
<td>7.9 - 80.8 (44.79)</td>
<td>28 (C)</td>
</tr>
<tr>
<td>NO₃</td>
<td>0.02 - 1.150 (0.26)</td>
<td>150 (N)</td>
</tr>
<tr>
<td>Fe O₇</td>
<td>0.00 - 0.344 (0.08)</td>
<td>0.002 (Fe)</td>
</tr>
</tbody>
</table>

Keterangan: Angka dalam kurung adalah nilai rata-rata (Krauskopf, 1979).
Seluruh nitrat berasal dari air sungai yang dikukatkan oleh hasil analisis kendungan nitrat dalam air laut berkisar 0,5 ppm.

2) Oksigen

Konsentrasi dan distribusi oksigen di laut ditentukan oleh kelarutan gas oksigen dalam air dan proses biologi yang mengontrol tingkat konsumsi dan pembebasan oksigen. Proses fisik juga mempengaruhi kecepatan oksigen memasuki dan terdistribusi di dalam laut.

Bahan dan Metode

Untuk mengetahui kondisi osegrafiri wilayah perairan Riau dilakukan dengan survey dan menghimpun data osegrafiri dari beberapa sumber antara lain; Data GPS Bakorstanal tahun 2002, peta batymetri wilayah perairan Riau, dan identifikasi kondisi perairan melalui parameter Kimia dan Fisika perairan. Serta melakukan pengukuran kecepatan arus, suhu tingkat salinitas.

Hasil dan Pembahasan

Dinamika Perairan Ekosistem Pesisir dan Laut Riau.

Perairan Riau yang bermuara dan membentang di wilayah Timur pulau Sumatera memiliki karakteristik berbagai tipe ekosistem, seperti ekosistem mangrove, ekosistem terumbu karang, ekosistem padang lamun dan ekosistem estuaria. Kondisi osegrafiri perairan Riau menurut tabel 3.

Tabel 3. Karakteristik Pasang Surut di Perairan Riau

<table>
<thead>
<tr>
<th>No</th>
<th>Lokasi</th>
<th>Lintang</th>
<th>Bujur</th>
<th>Tipe Pasang Surut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bagan Siapi-api</td>
<td>02°, 02', 00", U</td>
<td>100°, 06', 00", T</td>
<td>Pasu Ganda</td>
</tr>
<tr>
<td>2</td>
<td>Dumai</td>
<td>01°, 07', 00", U</td>
<td>101°, 05', 00", T</td>
<td>Pasu ganda Campuran</td>
</tr>
<tr>
<td>3</td>
<td>Bengkalis</td>
<td>01°, 02', 00", U</td>
<td>102°, 01', 00", T</td>
<td>Pasu ganda Campuran</td>
</tr>
<tr>
<td>4</td>
<td>Sungai Stak</td>
<td>01°, 02', 00", U</td>
<td>102°, 02', 00", T</td>
<td>Pasu ganda Campuran</td>
</tr>
<tr>
<td>5</td>
<td>Sungai Paking</td>
<td>01°, 04', 00", U</td>
<td>102°, 02', 00", T</td>
<td>Pasu ganda Campuran</td>
</tr>
<tr>
<td>6</td>
<td>Blandong</td>
<td>00°, 05', 00", U</td>
<td>103°, 03', 00", T</td>
<td>Pasu ganda Campuran</td>
</tr>
<tr>
<td>7</td>
<td>Pasir Panjang</td>
<td>01°, 07', 33", U</td>
<td>103°, 03', 00", T</td>
<td>Pasu ganda Campuran</td>
</tr>
<tr>
<td>8</td>
<td>Sungai Indragiri</td>
<td>00°, 04', 00", S</td>
<td>103°, 06', 00", T</td>
<td>Pasu ganda Campuran</td>
</tr>
<tr>
<td>9</td>
<td>Salat kijang</td>
<td>00°, 08', 00", U</td>
<td>104°, 06', 00", T</td>
<td>Pasu ganda Campuran</td>
</tr>
<tr>
<td>10</td>
<td>Batu Ampar</td>
<td>01°, 09', 00", U</td>
<td>103°, 59', 49", T</td>
<td>Pasu ganda Campuran</td>
</tr>
<tr>
<td>11</td>
<td>Tarempa</td>
<td>01°, 10', 00", U</td>
<td>104°, 70', 00", T</td>
<td>Pasu tunggal</td>
</tr>
<tr>
<td>12</td>
<td>Penangi-Natuna</td>
<td>01°, 11', 00", U</td>
<td>104°, 68', 00", T</td>
<td>Pasu Tunggal</td>
</tr>
</tbody>
</table>

Dari data tabel 3 menunjukkan bahwa sebahagian besar wilayah pesisir dan laut Riau memiliki tipe pasang surut ganda campuran, ketinggian rata-rata gelombang 1,3 m, laju arus berkisar antara 0,2 knot dan 1,7 knot. Sementara diwilayah perairan Selat Melaka mengalami musim angin utara pada bulan Desember sampai Pebruari dan musim angin selatan pada bulan Juni sampai Agustus. Untuk kedalaman perairan Selat melaka 0-40 m dan salinitas perairan berkisar antara 16 sampai 56 ppm.

Ekosistem mangrove banyak ditemukan di bahagian pulau yang relatif terlindung dan menyebab hampir disetiap gugusan pulau dan sepanjang kawasan pesisir timur Riau. Menurut data dari Dinair Kehutanan Riau (Riau dalam angka 2001), dari luas 680.000 ha pada tahun 1982 hutan mangrove Riau pada tahun 2002 tinggal seluas 250.000 ha. Yaitu 6,6% dari luas hutan Riau saat ini. Hal ini terjadi akibat aktivitas masyarakat baik dari sudut pengembangan kawasan baru maupun kegiatan ilegal logging yang marak pada dekade terakhir ini. Seperti ketahtui bahwa hutan mangrove, memiliki daya adaptasi yang khas untuk dapat terus hidup di perairan laut dangkal. Daya adaptasi tersebut meliputi:

a. Perikaran yang pendek dan melari luas, dengan akar penyangg atau tudung akar tumbuh dari batang dandahan sehingga menjembrini kokohnya batang.

b. Berak atau bergerak di air banyak air.

c. Mempunyai jaringan internal penyimpan air dan konsentrasi garam yang tinggi.

*Ekosistem Pada lamun (Sea grass Beds) cukup luas di kawasan timur Riau,
karena di kawasan ini banyak terdapat perairan laut dangkal dan tidak jauh dari pantai seperti Karimun, Barelang, Bintan Natuna, Selingsang, dan beberapa pulau kecil lainnya yang terlindung dari gelombang dan arus yang kuat. Habitat Lamun, selain ditemukan pada perairan dangkal, juga sering ditemukan bersosiasi dengan ekosistem mangrove dan terumbu karang. Secara ekologis padang lamun memiliki beberapa fungsi penting bagi daerah pesisir yaitu:

a. Sumber utama produktifitas primer.
b. Sumber makanan penting bagi organisme (dalam bentuk detritus).
c. Menstabilkan dasar lunak, dengan sistem perakaran yang padat dan saling menyilang.
d. Tempat berlindung organisme.
e. Sebagai peredam arus sehingga menjadi perairan sekitarnya tenang.
f. Sebagai pelindung dari panas matahari yang kuat bagi penghuninya.

Kondisi ekosistem padang lamun di wilayah kepulauan Riau yaitu Ekosistem Estuaria, memiliki produktivitas primer yang cukup tinggi keempat setelah ekosistem mangrove, padang lamun dan terumbu karang. Ekosistem ini berperan penting dalam memberikan harta bahan organik ke perairan pesisir dan perairan tawar melalui sirkulasi pasang; merupakan habitat berbagai jenis ikan, krustasea dan moluska dan merupakan daerah asuhan bahkan daerah mencari makan bagi beberapa organisme akuatik, terutama udang panaed dan udang galah. Selain itu estuaria juga menampung segala materi yang dibawa oleh aliran air sungai dari daratan dan dibawa arus pasang dari laut.

Hal demikian merupakan suatu bukti bahwa kebijakan lingkungan kita masih terbatas pada komitmen yang tak terwujudkan dalam suatu implementasi yang terencana dan terukur untuk melestarikan sumberdaya perairan di masa depan. Secara nasional, kebijakan lingkungan serta pemanfaatan sumberdaya alam kita masih beroorientasi pada daratan, sehingga kekecayaan sumberdaya perairan tidak mendapat proporsi yang sewajarnya.

Potensi Energi Pasang Surut Wilayah Perairan Riau

<table>
<thead>
<tr>
<th>No</th>
<th>Wilayah perairan</th>
<th>Kondisi</th>
<th>Lokasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bengkalis</td>
<td>Jarung-sedang</td>
<td>Rupat, Rangsong, Bukit batu, Merbau Tebing tinggi, Bengalis, Pulau Padang, Buton, Batu panjang</td>
</tr>
<tr>
<td>2</td>
<td>Rokan Hilir</td>
<td>Jarung-sedang</td>
<td>Bagan Siapi-api, Penipahan</td>
</tr>
<tr>
<td>3</td>
<td>Indragiri Hilir</td>
<td>Jarung-sedang</td>
<td>Gunung, Perigi raja, Gaung, Conc-conc hutan, Pulau burung</td>
</tr>
<tr>
<td>4</td>
<td>Dumai</td>
<td>Jarung-sedang</td>
<td>Dumai, Tj medang Tj. Datuk</td>
</tr>
</tbody>
</table>
Pemanfaatan pusat listrik energi pasang surut direalisasikan di La Rancher Francis diikuti oleh Rusia di Murmansk, Lumboy, Tae Menzo Boy, dan The Tihie Sea. Tidak jauh dari wilayah Indonesia, ada Australia yang memanfaatkannya di Kimberly, saat ini potensi energi pasang surut di seluruh samudera di dunia tercatat 3.106 MW.

Untuk Indonesia daerah yang potensial adalah Pulau Sumatera, Sulawesi, Nusa Tenggara Barat, Kalimantan Barat, Papua, dan pantai selatan Pulau Jawa, karena pasang surutnya biasa lebih dari lima meter. Pemanfaatan energi pasang surut pada dasarnya dibedakan menjadi dua yaitu kolam tunggal dan kolam ganda. Pada sistem pertama energi pasang surut dimanfaatkan hanya pada periode air surut (ebb period) atau pada periode air naik (flood time). Sedangkan sistem yang kedua adalah kolam ganda kedua periode baik sewaktu air pasang maupun air surut energinya dimanfaatkan. Turbin dan saluran terletak dalam satu bendungan (dam) yang memisahkan kolam dan laut. Sewaktu air mulai surut terjadi adanya perbedaan tinggi air (head) antara kolam dan laut yang menyebabkan air mulai mengalir ke arah laut dan memutar turbin.

Selanjutnya ditinjau dari mekanisme pusat listrik energi pasang surut tergantung pada beberapa faktor yakni arah angin, kecepatan angin, lamanya bertasp, dan luas daerah yang dipengaruhi. Oleh karena itu, didalam penelitian mengenai energi ini faktor meteorologi dan geofisika menjadi kuncinya.

Pada pemanfaatan energi ini diperlukan daerah yang cukup luas untuk menampung air laut (reservoir area). Namun sisi positifnya adalah tidak menimbulkan polutan bahan-bahan beracun baik air maupun udara.

Disamping pemanfaatan energi pasang surut juga dapat dimanfaatkan energi gelombang untuk kebutuhan energi listrik. Menurut hasil penelitian Hulls, bahwa untuk deretan ombak yang tinggi rata-rata 1 meter dan periode 9 detik dapat menghasilkan daya listrik sebesar 4,3 kW dan deretan ombak dengan tinggi 2 sampai 3 meter dapat menghasilkan daya sebesar 39 kW. Hal ini juga merupakan peluang bagi wilayah perairan Riau yang memiliki ombak yang cukup untuk menunyai energi kebutuhan listrik terutama wilayah pulau-pulau yang masih minim pasokan energi listrik.

Kesimpulan

Wilayah perairan Riau sangat mempunyai potensi kesejahteraan bagi masyarakat, tapi sampai saat ini belum dimanfaatkan secara maksimal. Seluas 40 % masyarakat Riau masih tergolong dibawah garis kemiskinan. Sumber daya alam khususnya di wilayah perairan lautan yang menunyai untuk dimanfaatkan hanya terpendam membisu. Dan rakyat kecil yang berprofesi sebagai nelayan tradisional dengan kemampuan yang terbatas hanya bisa memperoleh dan mengatasi risiko laut sebaik kebutuhan hidup selama-hari dan produk perikanan laut berupa sisa hasil ikan, keping dan udang-udang yang tidak diterima oleh pasar ekspor, sementara para touke/tengkulak memperoleh keuntungan besar dari hasil ekspor produk perikanan laut yang tetapnya berkualitas.

Dari potensi konversi energi kelautan seperti pasang surut dan gelombang, wilayah perairan Riau memiliki potensi yang cukup menonjol dimasa depan, mengingat saat ini Riau mengalami krisis energi listrik yang cukup mengganggu produktivitasumberdaya daerah. Pemanfaatan sumber energi alternatif merupakan solusi yang terbaik dalam mengantisipasi semakin berkurangnya cadangan minyak bumi Riau, disamping membantu sektor pemanfaatan pembangunan energi listrik bagi daerah.

Daftar Pustaka

